Утепление воздуховодов вентиляции на улице

Утепление воздуховодов вентиляции на улице

Теплоизоляция (утеплитель, теплоизолятор) — элемент конструкции или материал, обеспечивающий сопротивление теплопередаче или ее уменьшение. Его использование — основной способ предупреждения возникновения конденсата в системах проветривания. Утеплитель для правильной эксплуатации вентиляционных труб (венттруб, вентрукавов) — необходимость. Помимо защиты от появления влаги изоляция выполняет дополнительную функцию — заглушает шум ветра.

Рис.1 Утепление вентиляционной системы

Чем опасен конденсат

Появление капель воды внутри венттруб — неизбежный процесс при столкновении потоков теплого и холодного воздуха, повышенной влажности, нарушениях в работе системы и правил эксплуатации помещений. Конденсат не только постепенно разрушает материал, но создает благоприятные условия для развития плесени, грибков. Это повышает риск распространения аллергических и респираторных заболеваний. Особенно необходимо утепление вентиляционных труб на неотапливаемом чердаке. Зимой разница температур воздуха, находящегося в системе вентиляции, и стенок труб увеличивается. Влаги образуется больше, она может скапливаться не только на внутренней поверхности воздуховода, но и снаружи. Не нуждаются в теплоизоляции только сравнительно новые текстильные (тканевые) трубы, за счет особенностей материала влага в них не накапливается.

Типы вентиляционных систем

Вентсистемы делятся по принципу работы на вытяжные, приточные, приточно-вытяжные. Отличий в монтаже теплоизоляции для них нет. По месту установки системы вентиляции бывают бытовые и промышленные. Площадь, воздухообмен трубопроводов, объем вредных испарений на производстве во много раз выше, чем в жилом, офисном или торговом помещении — требуется более мощное оборудование. Еще одно отличие — в бытовых вентсистемах чаще используют пластиковые трубы, в промышленных металлические оцинкованные.

Особенно нуждаются в защите от конденсата именно металлические венттрубы. В процессе резки на куски нужной длины слой оцинковки нарушается. От контакта с влагой металл быстро ржавеет, труба приходит в негодность в течение 2 — 3 лет.

Рис.3 Промышленная вентсистема

Утеплители для бытовых помещений

Утеплить вентиляционную трубу в жилом здании или частном доме можно следующими материалами:

  1. Минеральная вата (минвата).
  2. Базальтовая (каменная) вата.
  3. Вспененный полиэтилен.
  4. Вспененный каучук.
  5. Пенопласт.
  6. Пенополистирол.
  7. Асбестовые плиты.
  8. PIR плиты.

Органические теплоизоляторы, например целлюлозная эковата, для утепления вентиляции в помещении или на чердаке не пригодны, так как слеживаются в течение 2 — 3 лет и теряют свойства. Обматывать трубы тканью, войлоком бессмысленно. Такая защита быстро пропитается влагой и даст эффект обратный желаемому.

Рис. 4 Утепление венттруб бытовой системы

Минеральная вата

Под названием «минеральная вата» продавцы и производители понимают утепляющие материалы из стеклянных, шлаковых или базальтовых волокон, в виде плит или гибких матов. Базальтовая вата значительно отличается по цене и характеристикам, шлаковая в продаже встречается редко (из-за вредности), поэтому минеральной обычно называют именно стекловату. Другие названия — минвата, стекловата, стеклянная вата.

Достоинства:

  • хорошие утепляющие и шумопоглощающие свойства — коэффициент теплоизоляции 0,030-0,052 Вт/м°C;
  • упругость, просто монтировать поверх труб круглого сечения;
  • прочность;
  • пожаробезопасность, выдерживает температуру до 450 °С;
  • низкая цена.

Недостатки:

  1. Волокна стекловаты ломкие, в процессе резки и монтажа образуется множество очень мелких и острых осколков. Они легко проникают под одежду, в кожу, легкие, глаза, работать нужно в респираторе, защитных очках и спецодежде.
  2. В состав дешевой минваты могут входить фенолформальдегидные смолы. Они вызывают отравления и онкологические заболевания. При покупке утеплителя спрашивать у продавца экспертное заключение о соответствии товара санитарно-эпидемиологическим и гигиеническим требованиям.
  3. Стекловата сильно впитывает воду из воздуха, влага задерживается внутри и с трудом выводится. Решение этой проблемы — минвата с покрытием из фольги, выполняющим роль пароизоляции.
  4. При постоянном контакте с влагой за 3 года стекловата теряет до 50% теплоизолирующих свойств. Это не касается минваты фольгированной.
  5. Даже в сухих помещениях стекловата постепенно слеживается.

Рис. 5 Минвата

Для утепления круглых труб вентиляции используют минвату в матах (рулонную). Ею, как одеялом оборачивают, трубу и закрепляют отожженной проволокой (для вязки арматуры), металлической или синтетической упаковочной лентой. Квадратные вентрукава можно защитить плитами из стекловаты. Их приклеивают на специальный клей.

Базальтовая вата

Базальтовая (каменная) вата состоит из волокон расплавленных горных пород (базальта). Это более современный, усовершенствованный минеральный утеплитель. Каменная вата, как и стеклянная, продается в плитах и матах. Их монтаж осуществляется тем же способом, что и при утеплении минватой.

Для быстрого и удобного выполнения теплоизоляции труб дымоходов или вентиляции круглого сечения некоторые производители выпускают готовые цилиндры из базальтового волокна, с покрытием из фольги или без него. Цилиндры легко режутся на куски нужной длины. Их одевают на трубу, как чехол или скорлупу. Замки-пазы на цилиндрах обеспечивают плотное скрепление без щелей.

Рис. 6 Цилиндры из базальтовой ваты

Достоинства базальтовой ваты:

  • пожаробезопасность — материал относится к негорючим, выдерживает температуру до 1000 °С;
  • долговечность — в отличие от минваты базальтовые маты не деформируются со временем, не оседают (толщина слоя изоляции не меняется);
  • коэффициент теплоизоляции от 0, 034 до 0, 038 Вт/м°C.

Недостатки:

  • опасность для здоровья человека — относится только к дешевым маркам, в дорогих вместо фенолформальдегидных смол используют биополимерное связующее;
  • более высокая, по сравнению с минватой цена.

Для защиты от впитывания влаги качественную базальтовую вату пропитывают водоотталкивающим составом (гидрофобизатором) и покрывают с одной стороны алюминиевой фольгой.

Рис. 7

Вспененный полиэтилен

Недорогой простой способ утеплить круглые воздуховоды или короба вентиляции — покрыть их вспененным полиэтиленом. Это материал, внешне похожий на поролон, но с более крупными ячейками. Его разновидности:

  1. Обычный. Торговые названия — изолон, пенолон, тепофол и др. Материал нарезают на куски, оборачивают ими трубу и склеивают скотчем.
  2. Фольгированный. С одной стороны он покрыт алюминиевой фольгой. Она отталкивает влагу и отражает тепло. Торговые названия — пенофол, ультрафлекс, фаралон, мосфол, тепофол. Для склеивания швов изоляции с отражающим слоем подходят алюминиевый скотч или специальный клей(например Изоком).
  3. Самоклеящийся. На одну из сторон этого материала нанесен уже нанесен слой клея. Это облегчает выполнение работ.
  4. Трубная теплоизоляция. Из вспененного полиэтилена, как и из базальтового волокна, делают готовые цилиндры-скорлупы для труб круглого сечения. Торговые названия —энергофлекс, термафлекс и др.

Рис. 8 Вспененный полиэтилен

Характеристики:

  • коэффициент теплопроводности — в зависимости от марки от 0,031 до 0,051 Вт/м°C;
  • влагоустойчивость — водопоглощение от 0,2 до 1%;
  • диапазон рабочих температур — от -60°С до +100°С;
  • срок службы — до 10 лет.

Достоинства:

  • эластичность;
  • прочность;
  • устойчивость к воздействию кислот, щелочей, других агрессивных веществ;
  • простой монтаж без отходов, режется обычным ножом, мало весит;
  • возможность демонтажа и повторного применения.

Недостатки:

  • плавится при температуре выше +100 °С;
  • класс горючести Г2 (умеренногорючие) — сейчас в продаже появились марки с добавлением антипиренов, которые относятся к классу Г1 (слабогорючие);
  • высокая дымообразующая способность — класс Д3;
  • вреден для экологии — период разложения 200 лет.

При покупке вспененного полиэтилена обращать внимание на маркировку. По способу производства различают два его вида:

  • сшитый — ППЭ;
  • несшитый (газовспененный) — НПЭ.

ППЭ стоит немного дороже, но превосходит НПЭ по всем характеристикам. Отличить НПЭ от ППЭ можно по запаху газа (при его производстве используют бутан, фреон). В Европе для строительства несшитый вспененный полиэтилен применять вообще запрещено.

Рис.9 Сшитый и несшитый вспененный полиэтилен

Вспененный синтетический каучук

Этот материал предназначен специально для изоляции труб, на 90% состоит из закрытых пор. Внешне вспененный каучук похож на ППЭ, но отличается повышенной гибкостью. Его выпускают в виде листов, матов, рулонов и трубок (цилиндров), в том числе со слоем фольги. Монтаж выполняют так же, как и при использовании вспененного полиэтилена, есть марки с клеевым слоем с одной стороны.

Характеристики:

  • коэффициент теплопроводности — от 0,024 до 0,038 Вт/м°C
  • диапазон рабочих температур — от -200°С до +175°С;
  • срок службы — до 30 лет.

Достоинства вспененного каучука:

  • влагостойкость;
  • устойчивость к появлению плесени;
  • класс горючести Г1, самозатухающий;
  • не выделяет пыли, волокон, вредных веществ и неприятных запахов — пригоден для применения на объектах с повышенными санитарно-гигиеническими требованиями;
  • низкая цена.
Читайте также:  Как крепится пластиковый фартук

Рис. 10 Вспененный каучук

Пенопласт

Пенопласт — вспененная масса из полимеров (пластика), основной объем которой занимает газ. Одна из сторон может быть покрыта фольгой. Материал жесткий, выпускают его в виде плит или трубной изоляции (скорлупы из двух — трех секций, соединяющихся замком шип-паз). Пенопласт в плитах пригоден для изоляции труб только квадратного сечения.

Характеристики:

  • коэффициент теплопроводности — от 0,032 до 0,050 Вт/м°C;
  • водопоглощение — 4 % за 30 суток;
  • предел прочности при статическом изгибе — от 0, 07 до 0,20 кгс/м2;
  • диапазон рабочих температур — от -50°С до +75°С;
  • срок службы — до 25 лет.

Достоинства:

  • малый вес;
  • простота резки и монтажа;
  • устойчивость к гниению;
  • низкая цена.

Недостатки:

  • легко воспламеняется — группа горючести Г3 или Г4;
  • при горении выделяет вредные вещества — покупать можно пенопласт только известных марок, высокого качества;
  • привлекателен для грызунов.

Монтаж плит или цилиндров из этого утеплителя осуществляют по принципу кирпичной кладки (со смещением элементов относительно друг друга). Куски скрепляют специальным клеем для пенопласта — любой не подходит, так как этот материал при контакте со многими веществами плавится.

Рис. 11 Цилиндры из пенопласта

Пенополистирол

Пенополистирол (Пеноплекс, Техноплекс, ЭППС) — усовершенствованная более прочная, влагостойкая и дорогая разновидность пенопласта. Выпускают этот утеплитель в виде плит или трубок (скорлуп) с замками шип-паз.

Характеристики:

  • коэффициент теплопроводности — от 0,028 до 0,034 Вт/м°C;
  • водопоглощение — 0,4 % за 30 суток;
  • предел прочности при статическом изгибе — от 0, 4 до 1 кгс/м2;
  • диапазон рабочих температур — от -50°С до +75°С;
  • срок службы — до 50 лет.

Достоинства и недостатки ЭППС, правила монтажа такие же как у пенопласта.

Рис. 12 Пенополистирол

Асбестовые плиты

Для утепления вентиляционных труб и изоляционной термоизоляции кровли прежде использовались асбестовые (асбестоцементные) плиты. Сейчас во многих странах применять материалы, изготовленные на основе асбеста запрещено. Это связано с риском развития онкологических заболеваний при регулярном вдыхание асбестовой пыли, которая неизбежно появляется при изготовлении, резке, монтаже.

PIR плиты

Из пенополиизоцианурата изготавливают утеплитель нового поколения с жесткой ячеистой структурой — PIR. С обеих сторон плиты из этого материала покрыты фольгой.

Характеристики:

  • коэффициент теплопроводности — 0,021 Вт/м°C;
  • водопоглощение — не более 1%;
  • прочности на сжатие — 120 кПа;
  • срок службы — до 50 лет.

Достоинства:

  • группа горючести Г1 — Г2 (слабо- или умеренногорючие);
  • отсутствует риск повреждения креплениями при монтаже;
  • устойчивость к гниению.

Недостаток — при горении выделяет ядовитые вещества.

Рис. 13 PIR плиты

Утеплители для промышленных систем

Для теплоизоляции труб промышленных систем вентиляции помимо перечисленных утеплителей подходят более дорогие способы:

  1. Заливка напыляемым пенополиуретаном.
  2. Установка готовых воздуховодов с теплоизоляцией.

Пенополиуретан

Один из лучших способов защиты вентиляционных труб промышленных систем — напыляемая теплоизоляция из пенополиуретана. С помощью специального оборудования поверхности воздуховодов заливают слоем пены.

  1. Закрытоячеистый (жесткий) — помимо отличных теплоизолирующих свойств обеспечивает гидроизоляцию (поглощает не более 4% влаги).
  2. Открытоячеистый (эластичный, легкий) — в несколько раз меньше весит, лучше поглощает звук, стоит дешевле, но требует дополнительной гидроизоляции (впитывает до 15% влаги), непригоден для наружных работ.

Характеристики:

  • коэффициент теплопроводности — от 0,019 до 0,04 Вт/м°C;
  • диапазон рабочих температур — от -160°С до +150°С;
  • группа горючести — Г1;
  • прочность на сжатие — от 150 кПа;
  • срок службы — от 20 лет.

Достоинства:

  • плотное прилегание слоя утеплителя к трубам;
  • полное отсутствие швов;
  • возможность нанесения на трубы любых сложных форм;
  • быстрый монтаж.

Недостатки:

  • высокая стоимость;
  • сложный монтаж — требуется опыт работы с этим материалом;
  • в состав входят токсичные вещества — необходимо использование спецодежды, респиратора, очков (после застывание пены опасности отравления нет).

Рис. 14 Утепление труб пенополиуретаном

Теплоизолированные воздуховоды

Еще один вариант решения проблемы появления конденсата в вентиляционной системе — использование при монтаже уже утепленных воздуховодов.

  1. Гибкие — состоят из проволочного спирального каркаса, металлизированной пленки, слоя утеплителя и чехла из той же пленки.

Рис. 15. Гибкий теплоизолированный воздуховод

  1. Жесткие — из PIR-плит (PirroVentiDuct), из стекловолоконных плит Climaver и т. п . По прочности трубы из этого материала сравнимы с привычными стальными. Воздуховоды из плит утеплителя могут соединяться со стандартными стальными венттрубами с помощью фланцев.

Рис. 16 Воздуховоды из Пир-плит

Достоинства теплоизолированных воздуховодов:

  • снижение расходов на материалы;
  • уменьшение веса всей системы;
  • быстрый монтаж.

Существенных недостатков у теплоизолированных воздуховодов не обнаружено.

Рекомендации специалистов

При выборе подходящего материала для теплоизоляции вентиляционной системы учитывать:

  1. Коэффициент теплопроводности должен быть максимально низким.
  2. Влагостойкость. Потеря утепляющих свойств из-за впитывания влаги может свести к нулю все достоинства материала, в том числе низкую цену.
  3. Сложность монтажа. Стоимость услуг специалистов зависит от опасности материала и особенностей его крепления. Выполнение изоляции дешевым утеплителем может в итоге стоить дороже, чем самым качественным. Если работу предполагается выполнять самостоятельно, то значение имеют затраты времени и сил.
  4. Класс пожарной безопасности. Этот показатель может быть решающим, при выборе между двумя утеплителями со схожими характеристиками, если речь идет о помещении с высоким риском возгорания.

По мнению специалистов оптимальный вариант утепления вентруб — вспененный полиэтилен. Вспененный каучук превосходит его по всем характеристикам и не имеет недостатков.

Обустройство вытяжной системы в умеренных климатических условиях требует отдельного подхода к решению проблемы конденсата. Для недвижимости, расположенной в холодной климатической зоне, утепление вентиляционной трубы и вовсе является одним из обязательных условий для нормального газообмена.

Для чего требуется утепление и что может произойти, если обойти этот вопрос стороной – об этом и пойдет речь.

Необходимость утепления вентиляционной трубы

Каждый воздуховод вентиляционной системы, работающий на выброс тепла из помещения, требует обязательного утепления. В холодное время года, вследствие разницы температур выбрасываемого теплого воздуха из помещения и холодного воздуха на улице, внутри трубы образуется конденсат. Современные сплит-системы вентиляции и аналогичное климатическое оборудование с «собственными» воздушными каналами имеют специальные блоки, противодействующие образованию конденсата и выводящие скопившуюся влагу.

Трубы для вентиляции, в большинстве частных домов представляющие собой обыкновенный отрезок металла или пластика, неспособны проводить такое удаление конденсата. А процесс образования капелек росы происходит в них заметно быстрее. Итогом становится появление мокрых пятен на перекрытиях, изморози, сопровождаемой уменьшением воздушного канала внутри трубы.

Сырость вызывает образование грибка, создает оптимальные условия для развития болезнетворных микроорганизмов. Избавиться от этих неприятностей можно используя утеплитель для вентиляционных труб. При этом не всегда требуется именно полностью «укутать» воздушный канал, чтобы минимизировать образование конденсата.

Правильный подход к утеплению

Чтобы ответить на вопрос: как утеплить вентиляционную трубу в частном доме правильно и одновременно экономно – следует разобраться в причинах появления конденсата. Разница температур всегда приводит к появлению конденсата, но наиболее обильное выделение «росы» наблюдается на отрезке активного соприкосновения теплого и холодного воздуха. Чем ближе удастся его передвинуть к выходному отверстию трубопровода, тем меньшими окажутся потенциальная опасность и ущерб от конденсата.

Идеальным случаем считается ситуация, при которой смешивание холодного и горячего воздуха происходит в участке вентиляционной трубы, расположенном за пределами здания. Но реализовать это на практике удается не всегда.

Поэтому для дымоходов и воздуховодов на неотапливаемом чердаке утепление каналов считается обязательным. Благодаря этому удастся вывести «мокрую» зону – место наиболее активного образования росы – за стены постройки. Такое решение поможет даже при активном появлении большого количества конденсата не позволить влаге проникать в стены, провоцируя появление сырости, грибка и остальных сопутствующих неприятностей.

Помните, что основным разрушительным фактором, ухудшающим эксплуатационные характеристики любого вида вентиляции, является конденсат. А избежать его образования в нашей климатической зоне не удастся, потому лучше заранее принять меры для снижения его негативного воздействия.

Поиск оптимального места

Вертикальный дымоход от печного отопления, камина или газового котла благодаря выходу горячего воздуха будет полностью очищаться от влаги в процессе отопления помещения. Горизонтальные воздуховоды, выход которых располагается в стене, изначально должны монтироваться с уклоном книзу минимум в несколько градусов. Это позволяет скопившейся влаге стекать наружу, а не внутрь помещения. Поэтому самым важным моментом перед утеплением таких воздушных каналов является проверка наличия уклона для ее вывода. Иначе даже утепленные вентиляционные трубы станут в будущем источником проблем, пусть и заметно позже, чем вообще без теплоизоляции.

Читайте также:  Плитка для ванной в туле фото

Обязательным местом для утепления труб воздуховодов является неотапливаемое чердачное помещение. Именно в нем разница температур в холодное время года становится источником проблем из-за образования влаги. Конденсат на них, вне зависимости от того использованы пластиковые трубы или металлические, образуется как внутри, так и снаружи.

Утепление вентиляционных труб на чердаке – необходимость, позволяющая не только улучшить качество работы и надежность воздушных каналов, но и защитить от разрушения материал перекрытия. Также стоит упомянуть о неприятности в виде нелицеприятных разводов, пятен влаги и ржавчины в месте входа трубы в стену.

Выбор лучшего материала

Чтобы теплоизоляция любых: пластиковых, металлических и разных других вентиляционных труб оказалась достаточно эффективной, но и не ударила по бюджету – следует правильно выбрать утеплитель. Сегодня существует достаточно богатый выбор материалов для этого, как доступных так и достаточно дорогостоящих. Самыми рекомендуемыми вариантами являются следующие виды утеплителя:

  • Минеральная вата. Недорогой пожаробезопасный вариант, доступный практически в любом строительном магазине. Обратной стороной доступности минеральной ваты является трудоёмкость монтажа и необходимость последующей ее защиты фольгой или оцинковкой. Боится влаги.
  • Каменная вата. Обладает достоинствами минеральной ваты, а также ее недостатками. Со временем слеживается и теряет свои теплоизоляционные свойства.
  • Пенополиуретан и пенопласт. Разъёмные конструкции для труб определенного диаметра. Недорогие, но обеспечивающие отличную тепло- и влагоизоляцию. Недостатком материалов является высокая пожароопасность и достаточно низкая устойчивость к механическим повреждениям.
  • Вспененный полиэтилен. Утеплитель, предлагаемый в виде готовых трубок разного диаметра. Недорогой, отличатся хорошими показателями теплоизоляции, не боится влаги. Недостатком является необходимость надевать теплоизолятор на трубу воздуховода, что неудобно или даже иногда невозможно.

Выбор – чем утеплить вентиляционную трубу – каждый проводит сам. Основное правило, на которое рекомендуется опираться при выборе – приобретать тот материал, который наиболее полно решит проблему конденсата частной вентиляционной сети.

Покупку утепляющего материала для обеспечения надежной защиты не обязательно проводить с расчетом на всю длину воздушного канала. Очень часто достаточно защитить точки выхода трубы на крышу, магистраль в неотапливаемой комнате или зоны прямого контакта трубы с холодным воздухом, наружной стеной.

Конденсат – угроза не только трубам

Основной причиной проведения утепляющих вентиляционную магистраль работ, как правило, становится появление пятен влаги на стенах и потолке. Реже работы проводятся из-за громких завываний ветра в трубе или заметного внешне ее промерзания. Эти и другие разрушающие отдельные участки постройки факторы ошибочно считаются главной причиной для проведения утепления. На самом деле ситуация намного серьезнее.

Как уже было сказано выше, влага в стенах – отличная среда для развития грибка и болезнетворных микроорганизмов. Но для того чтобы плесень «проступила» на стенах нужно довольно много времени и влаги. И до момента пока она только лишь «покажется» на них, внутри вентиляционной системы уже образуется своя «экосистема», незаметно отравляющая дом.

Результатом этого может стать аллергия, непонятно чем вызванные недомогания, хронические головные боли. Вызывающие их болезнетворные микроорганизмы распространяются по воздуху, незаметно отравляя его. Поэтому правильное утепление вентиляции – это защита не только стен и перекрытий дома, но и здоровья его обитателей.

Образование конденсата, безопасность, шум, энергосбережение – таковы критерии, которые следует учитывать при выборе материала для теплоизоляции воздуховодов.

Теплоизоляция воздуховодов выполняет следующие основные функции:

• Предупреждение образования конденсата как на внутренней, так и на наружной поверхностях воздуховода.

• Обеспечение огнестойкости во избежание распространения огня в случае возгорания.

• Ослабление шума и вибраций, возникающих в процессе движения воздуха по воздуховоду.

• Уменьшение теплопередачи между потоком воздуха в воздуховоде и внешней средой.

Образование конденсата

В воздуховодах, по которым проходит холодный воздух, основная проблема – предотвращение образования конденсата на внешней стороне воздуховода.

Образование конденсата может приводить к коррозионным повреждениям воздуховодов и образованию плесени. Кроме этого, влага может просачиваться в помещение, вызывая при этом повреждения отделки и обстановки. Для предотвращения данного явления необходимо, чтобы температура наружной поверхности воздуховода была не ниже температуры точки росы воздуха помещения, в котором проложен воздуховод. Проблему можно решить, если оборудовать воздуховод теплоизоляцией, которая, наряду с низкой теплопроводностью, обладала бы высоким сопротивлением паропроницанию.

Толщина теплоизоляционного слоя устанавливается с учетом температуры точки росы (которая, в свою очередь, зависит от температуры и влажности воздуха в помещении), разности температур воздуха в воздуховоде и в помещении, теплопроводности изоляции и параметров воздуховода (формы, размера).

Приведенный на рис. 2 график позволяет рассчитать требуемую толщину теплоизоляционного слоя. В отношении влагопоглощения, характеристики лучше у теплоизоляционных материалов с закрытыми порами.

Следует иметь в виду, что с течением времени определенное, хотя и незначительное, влагопоглощение происходит в любых теплоизоляционных материалах, что повышает их теплопроводность.

Материалы с низким сопротивлением паропроницанию следует защищать соответствующим паронепроницаемым покрытием.

Зависимость коэффициента теплопроводности некоторых теплоизоляционных материалов от температуры

Теплоизоляция и противопожарная безопасность

Свойства того или иного материала в отношении противопожарной безопасности определяют его огнестойкость. Существуют шесть классов огнестойкости – от нулевого (негорючий) до пятого – по степени роста пожароопасности. Класс огнестойкости присваивается по результатам испытаний, в ходе которых образец материала подвергается воздействию высокой температуры.

Для организации воздуховодов применяются материалы, имеющие нулевой (0) класс огнестойкости. В случае, если канал имеет многослойную облицовку, допускается класс огнестойкости «ноль-один» (0–1). Данное условие соблюдается, если все поверхности в рабочем режиме состоят из негорючего материала толщиной не менее 0,08 мм и обеспечивают непрерывную защиту внутреннего теплоизоляционного слоя, имеющего класс огнестойкости не выше первого (1). Крепления и соединения, длина которых не более чем пятикратно превышает диаметр самого воздуховода, должны выполняться из материала, имеющего класс огнестойкости «ноль» (0), «ноль-один» (0–1), «один-ноль» (1–0), «один-один» (1–1) или «один» (1). Воздуховоды класса «ноль» (0) имеют наружную обшивку из материала класса огнестойкости не выше первого (1).

Системы воздухоподготовки и воздухораспределения создают шумы, передающиеся, в том числе, через систему воздуховодов. Шум возникает не только из-за турбулентности воздушного потока, проходящего по воздуховодам, но и от работы вентилятора, в процессе которой создается вибрация и иные акустические эффекты. По воздуховодам шум может распространяться из помещения в помещение. Бороться с шумом можно, если поддерживать небольшую скорость воздуха в воздуховодах, установить демпфирующие устройства в месте присоединения вентилятора к воздуховоду, использовать эластичную подвеску для воздуховодов, а также демпфирующие прокладки в местах пересечения воздуховодами стеновых конструкций. Шум, распространяемый по воздуховодам, может быть ослаблен также применением специальных шумоглушителей и звукоизолирующего покрытия. Многие теплоизоляционные материалы отличаются хорошими звукоизоляционными свойствами и могут использоваться в качестве и тепло-, и звукоизоляции. Таким образом, при выборе теплоизоляционного материала для воздуховода следует учитывать и его акустическую эффективность.

Расчет толщины теплоизоляционного материала. Посредством данного графика, построенного на основе двух значений l коэффициента теплопроводности теплоизоляционного материала, можно определить требуемую толщину материала, обеспечивающую предотвращение образования конденсата на поверхности воздуховодов

Читайте также:  Светодиоды в машину своими руками

Энергосбережение

Выбор толщины теплоизоляционного слоя с целью энергосбережения определяется экономическими соображениями. Теплоизоляция, ограничивая теплообмен между воздухом, проходящим по воздуховоду, и внешней средой, в ходе эксплуатации системы вентиляции позволяет получить определенную экономию энергоресурсов. При этом следует учитывать, что теплоизоляция имеет свою стоимость, подлежащую амортизации. Экономическая эффективность здесь определяется разницей между стоимостью сэкономленных за год энергоресурсов и суммой годовых отчислений на амортизацию затрат на устройство теплоизоляции. Оба показателя возрастают при увеличении толщины теплоизоляции, но характер роста различен. Следовательно, наибольшую эффективность можно получить лишь при некоторой определенной толщине теплоизоляции. Эта толщина варьируется в зависимости от типа теплоизоляционного материала и его стоимости. Следует также учитывать, что далеко не всегда имеется возможность использовать толщину, дающую наибольшую экономическую эффективность, как, например, в случае укладки каналов в подвесном потолке, где пространство крайне ограничено.

Для наиболее популярных материалов, применяемых для теплоизоляции воздушных воздуховодов, минимально допустимая толщина, в соответствии с действующими итальянскими нормативными документами, приведена в табл. 2. К воздуховодам типа «А» относятся воздуховоды, проложенные в неотапливаемом пространстве. Воздуховоды типа «Б» – каналы, встроенные в наружные стены внутри теплоизолированных строительных конструкций (в этом случае минимальная допустимая толщина теплоизоляции сокращается до 50 %). Воздуховоды типа «В» – каналы, проложенные в конструкциях, которые не сообщаются ни с наружной средой, ни с неотапливаемыми помещениями (минимальная допустимая толщина теплоизоляции сокращается до 30 %).

Таблица 1
Минимальная допустимая толщина теплоизоляции воздуховодов подогретого воздуха систем зимней климатизации в зависимости от теплопроводности (при средней температуре 40 °С) применяемого материала в соответствии с действующими итальянскими нормативными документами
Коэффициент теплопроводности теплоизоляционного материала, Вт/м • °С 0,030 0,032 0,034 0,036 0,038 0,040 0,042 0,044 0,046 0,048 0,050
Толщина теплоизоляционного слоя, мм 19 21 23 25 28 30 32 35 38 41 44

Теплоизоляция изнутри или снаружи?

Теплоизоляция воздуховода может выполняться с внутренней или с наружной стороны. В первом случае воздушный поток, проходящий по воздуховоду, непосредственно контактирует с теплоизоляцией. При использовании в качестве теплоизоляции минеральной ваты или стекловаты поверхностные волокна необходимо упрочнить, чтобы со временем они не отслаивались под действием воздушного потока, особенно в случае достаточно высокой его скорости. Для такого упрочнения применяют клеящие вещества, не влияющие на огнестойкость теплоизоляционного покрытия. При этом эти клеящие вещества не должны выделять токсичные газы в случае возгорания.

При использовании теплоизоляции внутри воздуховода необходимо увеличивать сечение воздуховода для сохранения расчетной пропускной способности при заданной скорости движения воздуха. Кроме того, сторона теплоизоляции, соприкасающаяся с потоком воздуха, должна быть достаточно гладкой, чтобы не увеличивать сопротивление при движении воздуха по воздуховоду.

На сегодня задача обеспечения посредством изоляционного материала комбинированной тепло- и звукоизоляции уже не столь актуальна, как раньше, поскольку зачастую проблема шума решается теперь установкой глушителей либо шумоизоляционными мероприятиями непосредственно в источнике звука. В силу этого использование наружной теплоизоляции в настоящее время предпочтительней.

Еще одно немаловажное обстоятельство, связанное с отказом от внутренней теплоизоляции – профилактика возникновения очагов бактерий, образования отложений пыли и грязи, из-за которых теплоизоляционный материал может начать расслаиваться, выделять летучие вещества и терять свои качества.

Кроме этого, при наружной теплоизоляции существенно снижается риск распространения огня из помещения в помещение в случае возгорания.

Установка

Независимо от расположения теплоизоляционного материала, важнейший фактор – предотвращение мостиков холода, снижающих эффективность теплоизоляции, а также обеспечение высокой паростойкости (рис. 3). Мостики холода могут возникать в местах крепления каналов к конструкциям здания.

Эрозии теплоизоляционного материала препятствуют:

• При внутренней теплоизоляции – применению композитных материалов, где теплоизоляция комбинируется с металлическим слоем или пленкой.

• При наружной теплоизоляции – использованию обшивки из неопрена, листовой оцинкованной стали или листового алюминия.

Неправильное (А и В) и правильное (Б и Г) соединение секций воздуховодов круглого или прямоугольного сечения в целях предотвращения образования мостиков холода

Характеристики теплоизолирующих материалов

• Коэффициент теплопроводности l , Вт/м • °С, – наиболее важная характеристика теплоизоляционных материалов. Сопротивление теплопередаче можно улучшить, увеличив его толщину либо выбрав материал с более низким коэффициентом теплопроводности. На графике рис. 1 представлено влияние температуры на коэффициент теплопроводности некоторых теплоизоляционных материалов.

• Паропроницаемость: тепло-изоляционный материал может поглощать влагу конденсата. Следует учитывать, что теплопроводность возрастает при увеличении влагосодержания. Влагопоглощению особенно подвержены волокнистые и пористые теплоизоляторы с незакрытыми порами. Такие материалы необходимо защищать соответствующими пароизоляционными покрытиями.

• Акустическая эффективность: шум может распространяться воздушным путем, т. е. звуковые волны проходят по воздуху либо в виде вибрации, создаваемой вентилятором, либо колебаниями воздуха внутри воздушного канала. Звуковые волны передаются через жесткую конструкцию сети воздуховодов и конструкции здания. Часть звуковой энергии излучается во внешнюю среду, часть – преобразуется в тепло в силу эффекта внутреннего демпфирования материала, из которого выполнен канал. От конструкции канала зависит степень затухания шума.

• Стойкость к воздействию биологических реагентов: некоторые материалы могут подвергаться воздействию плесени, насекомых, микроорганизмов, приводящих к их разрушению. Возможно образование субстрата микроорганизмов.

• Предельно допустимая рабочая температура: определяет диапазон устойчивости материала, применяемого в качестве теплоизоляции. Как правило, этот температурный диапазон лежит в пределах от –30 до +60 °С.

• Санитарно-гигиенические показатели: при использовании воздуховодов не должны выделяться токсичные газы, а также любые иные вредные вещества, опасные для жизни и здоровья людей.

Минимальная допустимая толщина наиболее популярных теплоизоляционных материалов, применяемых для теплоизоляции воздуховодов

Применяемые теплоизоляционные материалы

• Минеральные волокна. Изоляционные материалы из минеральной ваты или стекловаты поставляются в виде формованных жестких и полужестких (трубные секции и панели) элементов либо в виде материала, плотность которого может меняться посредством прессования непосредственно во время укладки, что позволяет придать ему требуемую форму. Войлок поставляется в рулонах. При наружной укладке защищается армированным алюминиевым крафт-листом, при внутренней – слоем стекловолокна с поверхностной пропиткой. Трубные секции используются для наружной облицовки каналов с армированной алюминиевой защитой.

• Пеноэластомеры. Гибкие пеноматериалы с закрытыми порами. Выпускаются в пластинах либо экструдированием с последующей вулканизацией пены. Внешняя сторона гладкая, со стороны разреза – пористая. По огнестойкости относятся к категории самогасимых материалов. Не подвержены действию плесени и микроорганизмов. Имеют высокую степень стойкость к влагопоглощению паропроницанию.

• Производные полимеризации углеводородов (полиуретан, полиэтилен, полистирен, полиизоцианат, поливинилхлорид). Обычно выпускаются в пластинах, блоках, трубных секциях и т. п. Эти материалы представляют собой либо жесткую термопластмассу (полистирен, поливинилхлорид), либо жесткую термозатвердевающую (полиуретан, полиизоцианат), либо гибкий материал (полиэтилен, гибкий полиуретан). Применяются для внутренней укладки. Материал с незакрытыми порами отличается хорошей звукоизоляцией, но имеет недостаток – подвержен действию плесени и микроорганизмов. Материалы с закрытыми порами в силу меньшей пористости предпочтительнее с санитарно-гигиенической точки зрения, но отличаются худшей звукоизоляцией. Пенополиэтилен с закрытыми порами поставляется в пластинах и трубах, он огнестойкий, самогасимый. Высокая гибкость позволяет легко придать ему требуемую форму. Пенополиуретан и пенополиизоцианат с закрытыми или открытыми порами относятся к самогасимым или негорючим материалам. Поставляется в блоках, которые разрезаются на отдельные пластины. Полиуретан также поставляется в виде трубных секций, как правило, в комплекте с облицовочным материалом (ПВХ, полиэтиленом или алюминием), используемым в качестве пароизоляции. Полистирен выпускается в виде поропласта и экструдата, поставляется в блоках, которые разрезаются на пластины требуемой толщины. С определенными добавками является негорючим самогасимым материалом. Поливинилхлорид с закрытыми порами имеет хорошую влагостойкость и относится к категории негорючих.

• Фенольные вспученные смолы. Имеют закрытые поры, огнестойкие, не подвержены действию микроорганизмов. Применяются в основном в холодильных системах.

Перепечатано с сокращениями из журнала «RCI».

Ссылка на основную публикацию
Установка энергосберегающих ламп уличного освещения
Говоря об установке светодиодов на улице, стоит развеять первый миф о том, что это неблагоприятная среда для их работы. Независимо...
Установка замка в металлическую дверь своими руками
Хотите превратить свой дом в настоящую крепость? В таком случае позаботьтесь не только о качественной металлической двери, но и о...
Установка зимнего комплекта на кондиционер инструкция
Зимний комплект для бытовых сплит-систем представляет собой ряд доработок, которые позволяют эксплуатировать охлаждающую установку в холодное время года. В стандартной...
Установки светильников на крюк
Современные конструкции осветительных приборов предполагают несколько способов крепления. Самые распространенные из них – на планку и крюк. Каждый способ имеет...
Adblock detector